
N95- 19761

AUTOMATED RULE-BASE CREATION

via CLIPS-INDUCE

Patrick M. Murl)hy

Department of Information & Computer Science

University of California, Irvine, CA 92717

pmurphy@_ics.uci.edu

(714) 725-2111

Abstract

Many CLIPS rule-bases contain one or more rule groups that l)ertiJrm classification.

In this paper we describe CLiPS-Induce, an automated system for the creation of a

CLIPS classification rule-base from a set of test cases. (;LIPS-In(hu:e consists of two

components, a decision tree induction component and a CLIPS production extraction

component. ID3 [1], a popular decision tree induction algorithm, is used to induce a

decision tree from the test cases. CLIPS production extraction is accoml)lisiled through

a top-down traversal of the decision tree. Nodes of tile tree are used t(> c,mstruct query

rules, and branches of the tree are used to collstl'll('l. ('lassifi('a.ti_,lJ rLll(.s. TIw learl,('([

CLIPS productions may easily be incorporated into a larg(' (:LI PS s\,sl.(.in 1.llal I)('tl\Jl'=ll

tasks such as accessing a database or displaying information.

INTRODUCTION

Many CLIPS rule-bases contain one or more rule groups that perform classification. In

this paper we describe CLiPS-Induce, an automated system h)r tile cr(,aticm of a ('Li I)S

classification rule-base from a set of test cases. The rule-base create't[hy ('LIPS-Ind_we

consists of two sets of rules, a set of user query rules to ask th(' ,Iser for any missing

information necessary to perform classification, and a set of classili('atiotl ,'uh's that is

used to make the classification.

In the remainder of the paper, a detailed description of CLiPS-Induce and ID3 will be

presented, followed by an analysis of CLiPS-Induce and list of potential extensions.

DESCRIPTION

In this section a description of (;LIPS-Induce will be given, along witl, an eXaml,le of

its usage on a real-world problem, the Space Sl,utth' l.alldi=,g ('onlr_,l l_r_,l,h'lll. TI,,'

goal of this classification problem is to determine wl,ell_cl' llw spat(' sl,,ittlc sl_o,tht I,e

landed manually or automatically.

326

OF POOR _;mJ_,l.r_

CLIPS-Induce takes as input a set of test cases and returns two sets of (ILIPS rules

that perform user querying and classification. Each case is described in terms of a set

of feature-value pairs. The same set of features is used for each case. An example case

for the shuttle problem is given in Table I.

Table I: Example case from shuttle probhan_.

• Landing = lnanual

• Stability = stab

• Error --= lnnl

• Sign = nn

• Wind = tail

• Magnitude = OutOfRange

• Visibility = yes

One feature is identified as the feature to be predicted given the vallu,s of the other

features. For the shuttle problem, the feature La_,di,,g is to be predicted in terms of

the features Stability, Error, Sign, Wind, Ma.qnitud_ and Vi._ibility.

A decision tree is constructed from the set of cases using the decision tree construction

algorithm IDa. The tree constructed from the shuttle cases is shown in Figure 1. The

decision tree is then used to construct the user querying and classilicatioli rule sets.

The basic organization for CLIPS-lndt, ce to presented in Figur_ _ 2.

Decision Tree Construction

A decision tree predicts the value of one feature in terms of tl,- valm,s of otlter ['eattlres.

The process by which a prediction is made llsing a decision tr,.es is descrihed I.'low.

Using the decision tree in Figure i, the value of the feature La,,di,41 will l_e predicted

for the example case shown in Table I. Starting at the top (root) of tim decision lree.

the value of the feature Visibility is checked. Because the value is }'_._ the node at the

end of the branch labeled Yes is next tested. Since the wdt, e for the feature Stabilit!] is

stab, the Error node is next checked. Traversal of the tree continues down the uol(ss)

branch (because the value of Error is not ss), across the mm branch and finally down

the nn branch to the leaf labeled Manual. The value for the La,,di'n9 feature, predicted

by the decision tree for this case is Manual.

IDa is a decision tree construction algorithm that buihls a decision tree consistent with

a set of cases. A high-level description of the algorithm is shown in Table II. The tree

327

No

Automatic

(ss)

Error

[am

Manual Sign

(Manual_

Visibility

stab

Error

Yes

Stability

SS

Magnitude

not (Out O fRange/'__O fRang e

(Automatic) (Manual)
PP

Magnitude

not(OutOfRange)/_Out 0 fRange

I Magnitude I (Manual_

not(Strong) _ Strong

Automatic I Wind I

(Automatic) (Manual)

Figure 1: Decision tree constr_lcted by ID:_ using the shllttle cases.

Cases

I Construct Decision Tree

Decision Tree

I Construct User Query Rules

Decision Tree

Construct Classification Rules

UserQuery Rules

I Classification Rules

Figure '2: (',LIPS-Indll(:e Archil, ecture

328

is constructed in a recursive top-down manner. At each step in the tree's construction,

the algorithm works on the set of cases associated with a node lit th,' partial tree. If

tim cases at the node all have the same value for tile feature to Iw predicted, the node

is made into a leaf. Otherwise, a set of tests is evalllated to detet'nlilte wl_ich test. best

partitions the set of cases down each branch. The mel, ric used to evalllat_, tile I,artition

made by a particular test is know as information gall, (for a more colnl)h'te description

of information gain and ID3, see [1]). Once a test is selected for a node, the cases are

partitioned down each branch, and the algorithm is recursively called on tile cases at
the end of each branch.

Table II: ID3 Decision Tree Constr_lction Algorithm.

function generate_dtree(cases)

if stop_splitting(cases)

return leaf_class (cases);
else

best_cost := eval_examples_cost (cases);

for all tests()

cost := eval_cost(cases,test);
if cost < best_cost then

best_cost := cost;

best_test := test;

for all case_partitions(cases,best_test)

branches := branches U{generate-dtrce(casc_l_arl, ilioll) }"

return (best_test,branches);

There are three types of tests that are used by ('LIPS-Indlwe to construct decision

trees:

°

°

.

Two branch feature: = value: test: ()he branch fin J'ealurc = valu_ an¢l a second

branch for feature: 7L value.

Multi-branch feature = value: test: A branch lot each of the values that fiat+,r¢

has.

Two branch feature: > value test: One branch for .[caturc > vahu and a second

branch for feature <_ value.

The first and second test types are used for nomina.l-vallted feat,tres. <'.g. color. Whereas

the third test type is used for features with real or _Jr¢h,,'ed va.lllq's. _'.g. ag;e ,Jr size'.

329

Rule Generation

Tile first step in rule generation is to generate the iiser query rules. Tile pllrl)oSe of each

user query rule is to ask the user for the value of a particular feature. The user-defined

functiou used to ask the actual questions is shown below.

(deffunction ask-question ('?question)

(format t "%s " "?question)

(read))

The query rules are generated such that they only fire when the val,w ['_n a partic,llar

feature is needed and not already available. If, for example, the value._ for certain

features were asserted before execution of the classification rides began, cluery rllles tin'

those features would never fire. Typically, user query rules and classiiica.tioll rules [ire

in an interleaved manner.

User query rules are generated via a pre-order traversal of the tree. During the traversal,

each internal node of the tree is associated with a unique identifier that is used to identify

the act of having visited that node during rule exec_ltion. An examl_]_' user query rllle,

for the Sign node in Figure 1, is shown below.

(defrule sign-query-g773

(node node8)

(not (feature sign ?value))
=>

(bind ?answer (ask-question "What is the value of feat,ire sign'."'))

(assert (feature sign ?answer)))

The second step in rule generation is to generate the classiIicati_,n I'_lle._. l'lJ_' purt)t_se

of the classification rules is to traverse the decision tree along a palh ['ro,T1 the root of

the tree to a leaf. Upon reaching the leaf, the value for the teature t_ I_e predicted is

asserted to the fact-list. Whereas query rules are associated with intert,al Iiodes in tlw

decision tree, classification rules are associated with bram'lms in the tree. The' two roles

for the branches from the Sign node in Figllre 1, are shown in Table 111.

The Sign node is identified as nodc8. If the valm' for ligature, .S'igu is pp, than (nod_

nodeg) will be asserted by the first rule. Node9 is associated with the. Magnit_dc node.

If the value for ,5'ign were instead nn, the value "manual t'_n"the predicte_l feature Landing

would be asserted by the second rule. In the later case, because no new (node ...) fact

is asserted, execution of the user query and classification rules halts.

330

Table III: Exampleclassificationrules.

(defrule node8-sign-pp
?n <- (nodenode8)
(feature sign pp)
=>

(retract ?n)

(assert (node node9)))

(defrule node8-sign-nn

?n <- (node node8)

(feature sign nn)

(retract ?n)

(assert (feature lauding manual)))

ANALYSIS

The first issue to be concerned with in using tile (:LIPS-lnd,lce, is the time savings

relative to generating the rules by hand. For the shuttle problem, tlw 25 rules were

generated from a set of277 cases in only a few seconds. For another i,roldelll that deals

with predicting lymph node cancer, 87 rules were generated in less tha.ll a minute. ()ther

problems have been observed to generate rule-bases with as many as 5011 rl,les in very

reasonable anmunts of time. Given that a set of test cases is available, (:LIPS-Induce

can save a great deal of time.

The second issue concerns the accuracy of the induced rules on new cases. This concern

has been addressed by the area of machine learning where a great deal of research has

been done on the induction of decision trees from cases. Specifically, ID3 has been

empirically shown to do well at generating decision trees tlmt are a(:clll'ate oil ultseen

cases. For example, Figure 3 shows a learning clu've fl,r the shlltth-, i_rol)lem. Iwarning

curves show the accuracy of a model (a decision twe) o_D _l_s¢-,,,l_ (as¢,s, a.s a /'lnncthm

of the number of cases used to generate the zlu,¢h'l. Iq,r I,]1¢' s]llll, l,]¢' i_r¢_ldcqll, wlwn

only 10% of the 277 cases were used to generate tlw decisionJ tr,'cs, I,I1¢"a,'c,tracv olJ tlw

remaining 90% of the cases is approximately 92%. As tlw proportion of cases im:reascs,

the accuracy of the constructed decision trees im'reascs.

The third and final issue concerns the availability of a sufficient nl,nll)ers of cases needed

to induce an accurate set of rules (from Figure 3, the fewer the number of cases, the

less accurate is the induced decision tree). In answer to this concern, even if tlwrc arc

only a small number of cases for a problem, the rule-lmse p_;em'ratecl by ('l. IPS-Ii,d_wc

can be used as a starting point for a domain expel't,.

331

ORiQ!NAL PAGE fS

OF. POOR QUALITY

100

98

96

L 94

92

90
0.0 0.2 0.4 0.6 0.8 1.0

Proportion of Cases

Figure 3: Average accuracy of decision trees as a function of the proportion of the 277

cases used to construct tile decision trees. Tile accuracy of ,'m'h ,h'cisit,tl tree is Imsed

oil the cases not used to construct the tree.

EXTENSIONS

One of the ways that CLiPS-Induce could 1)e extended wotlld I)e to take atlva,ltage

of ID3's approach for dealing with missing feature values. (?urrently, the rule-I_ases,

generated by CLIPS-Induce, halt when the user cannot enter a val,le for a required

feature. The only drawback to extending CLIPS-Induce in this mature'r, is the increased

complexity and reduced understandability of the genera.ted rules.

Another enhancement to CLiPS-Induce wt),tl(I I,e t.() itse a more, s(q)l,isticate([ask-

question function. User-query rules could 1)e generated that also pass l.}m s('t of all()walde

values or value type to the ask-questioT_ function. The extra argmnent could provide

constraints on the allowable responses lnade by the user.

The third extension to CLiPS-Induce would be to allow interactive creation of decision

trees. It is often the case that an expert in the field has knowledge tha.t c()l,hl help in

forming a more accurate and more understandable decision tree.

CONCLUSION

In this paper, CLIPS-Induce, a (',ommon Lisp apl)licati()lL l liar ind,,(,s a ('LIPS ('lassiti-

cation rule-base from a set of test cases, is described. (;iwql a set o1"test cas_,s. (h'scril)ed

in terms of a fixed set of features, a decision tree is ('(mstrll('te(I ,Isillg the (lecisioll tree

construction algorithm, IDa. From the decision tree, two s(,ts (J[' rlth's at'(' (,xlract, ed.

One set of rules, the user query rules, ask the user for the values of feat,ires needed t()

make a classification. The other set of rules, the classification r,des, simtJlate a trawq'sal

of the decision tree in order to make the prediction that tlw decisio,, l,l'_'e WOIIhl n_ake.

The rule-base formed by CLIPS-Induce can easily be eml)edded in rule-bases that need

classification rule groups.

332

REFERENCES

1. Quinlan, J.R., "Induction of Decisi(mTrees," MA(!IIINE I+EAI_NIN(;. B,,st,)t,,
Massachusetts,l(1), 1986,81-106.

333

